# Mechanical pretreatment for enhanced food waste solubilization and anaerobic digestion

Ryan Graunke Interdisciplinary Ecology Seminar February 1, 2011

Advisor: Dr. Ann C. Wilkie Soil and Water Science Department





# Food waste: a global problem produced locally

- 32 million tons produced annually in the US
- 1.7 million tons generated annually in Florida
  - Currently only 1% is recycled









# Food waste is everywhere

- Grocery stores
- Supermarkets
- Restaurants
- Schools

- Hotels
- Prisons
- Households
- Food processors









# Food waste audits at local schools and restaurants

|                              | Schools   | Restaurants |
|------------------------------|-----------|-------------|
| Daily per capita food waste  | 30 – 83 g | 75 – 187 g  |
| Annual per capita food waste | 5 – 15 kg | 21 – 56 kg  |
| Daily food waste/location    | 8 – 37 kg | 20 – 56 kg  |
| Annual food waste/location   | 2 – 7 Mg  | 7 – 17 Mg   |







# Problems with landfilling food waste

- Methane emissions
- Leachate problems
- Transportation



- Land requirement
- Nutrient lock-up
- Aesthetics (odors, vermin)



Florida has a 75% recycling goal by 2020



### Closed-loop food waste diversion



## Anaerobic digestion of food waste

- Anaerobic digestion is the microbial decomposition of organic material to methane under anaerobic conditions
- Digesters harness natural microbial consortia, which also occur in wetlands, lakebeds, and ruminant animals





### **Digesters: all shapes and sizes**









# Food waste to energy

- Biogas: a methane-rich gas produced from organic material
- Used as an alternative to natural gas for:
  - Cooking
  - Heating
  - Electricity
  - Vehicle fuel





OGY LABORAT





# Food waste to fertilizer

- Nutrients converted to plant-available form
- Liquid fertilizer can be used in fertigation systems

OGY LABORATO

• Organic replacement for synthetic fertilizer





# Bioresources available in Florida's food waste

• 1.7 million tons of food waste per year could generate:

- 189 million m<sup>3</sup> of methane
- 14,300 Mg of nitrogen
- 2,100 Mg of phosphorous



# So what are we waiting for?

- While food waste digestion is possible, optimization is key to implementation
- Food waste is different substrate than manure or wastewater
- The rate of digestion is limited by hydrolysis
- Improving hydrolysis will facilitate food waste digestion.



# Mixed microbial metabolism





# Mixed microbial metabolism



# HUDENERGY AND SUCH

# Hydrolysis of organic macromolecules

- Microbes require organic molecules to be solubilized for assimilation to occur
- Hydrolysis is facilitated by extracellular enzymes produced by microbes in the digester





# Hydrolysis of organic macromolecules

• Different microbes and enzymes hydrolyze different macromolecules





# Hydrolysis of organic macromolecules

• Enzymes function through a lock-and-key mechanism





# How to improve hydrolysis

- Various methods have been studied to enhance food waste hydrolysis through pretreatment
  - Freezing/thawing
  - Heating (150°C)
  - Enzyme cocktails
  - Ball milling
- These methods are expensive and energy intensive
- Practical mechanical pretreatment may be more feasible



# **Research question**

How does mechanical pretreatment impact the anaerobic digestion of food waste?

**Hypothesis**: Low-tech mechanical pretreatment will improve solubility and therefore methane production

Objectives

- 1. Determine solubilization kinetics of pretreated food waste
- 2. Measure impacts of pretreatment on methane production



# Development of methodology

#### **Key parameters**

- Chemical oxygen demand (COD) measures organic strength of substrate
  - Total COD (TCOD) COD of particulate and soluble material
  - Soluble COD (SCOD) soluble organic matter; available for microbial growth
  - Solubility SCOD/TCOD%



# Development of methodology

- 1. Develop standard food waste as a representative substrate for experimental replication
- 2. Select hydrolytic enzymes to measure substrate availability for enzymatic hydrolysis after pretreatment
- 3. Choose suitable mechanical pretreatment method

# THE ROY AND SUCH

# 1. Standard food waste

- Food waste is highly variable and heterogeneous
- Moisture content range: 45%-90%
- Standard food waste must capture this heterogeneity, while representing "real" food waste







# 1. Standard food waste

#### Represents different organic macromolecules

| Food type | % (wet weight) | Macromolecule type            |
|-----------|----------------|-------------------------------|
| Apple     | 24             | Carbohydrate – sugars, pectin |
| Potato    | 24             | Carbohydrate – starch         |
| Bread     | 20             | Carbohydrate – starch         |
| Broccoli  | 12             | Carbohydrate – cellulose      |
| Beans     | 12             | Protein                       |
| Cheese    | 8              | Protein, fat                  |





# 1. Standard food waste

#### Represents actual food waste

| Parameter                     | Standard<br>food waste | School cafeteria<br>waste (n=33) | Restaurant dining<br>waste (n=50) |
|-------------------------------|------------------------|----------------------------------|-----------------------------------|
| Moisture                      | 70.1%                  | 52.9-75.3%                       | 43.9 - 92.2%                      |
| VS/TS <sup>a</sup>            | 95.4%                  | 80.2 - 95.8%                     | 70.1 - 97.8%                      |
| TCOD <sup>b</sup>             | 318.3                  | 302.3 - 580.0                    | 78.8 - 787.5                      |
| Total nitrogen <sup>c</sup>   | 3.08%                  | 2.07 - 7.01%                     | 1.04 - 5.59%                      |
| Total phosphorus <sup>c</sup> | 0.32%                  | 0.29 - 1.4%                      | 0.10 - 0.56%                      |

a: volatile solids/total solidsb: g COD/kg wet weightc: dry matter basis



## 2. Measure enzymatic hydrolysis

Commercial digestive enzyme cocktail selected due to efficacy and suitability for experimental use

| Enzyme    | Macromolecule targeted    | Concentration (per 0.25 g) |
|-----------|---------------------------|----------------------------|
| Amylase   | Carbohydrates (starch)    | 12,000 DU <sup>a</sup>     |
| Cellulase | Carbohydrates (cellulose) | 200 CU <sup>b</sup>        |
| Lactase   | Carbohydrates (lactose)   | 850 ALU <sup>c</sup>       |
| Pectinase | Carbohydrates (pectin)    | 50 Endo-PGU <sup>d</sup>   |
| Protease  | Proteins                  | 42,000 HUT <sup>e</sup>    |
| Lipase    | Lipids                    | 500 FCC-LU <sup>f</sup>    |

a: Dextrinizing units

b: Cellulase units

ZYMEDICI

TE ENZYME FORM

c: Acid Lactase units

d: Endo-polygalacturonidase Units

e: Hemoglobin Units in a Tyrosine base

f: Food Chemical Codex - Lipase Units



### 3. Mechanical pretreatment selection

- Mechanical pretreatment method should be practical for a restaurant, school, or grocery store
- Manual meat grinder selected for ease of use and uniformity of pretreatment
- In-sink food disposal also tested







# **1.** Determine solubilization kinetics of pretreated food waste

OGY LABORAT

2. Measure impacts of pretreatment on methane production



# **Objective 1: Solubilization kinetics**

- Developed assay to determine solubilization over time
- SCOD measured as a proxy for hydrolysis
- Mechanical pretreatment vs. intact food waste
- Enzymes added to measure substrate availability
- Buffer added to prevent acidification



Intact food waste



Pretreated food waste



Solubilizing food waste

#### Solubilization without enzymes

NERGY AND C

OLOGY LABORATOR



- Pretreatment: 28% solubilization within 2 hours
- Intact food waste: 20% solubilization at 8 hours
- All pretreatments showed similar solubilization

Solubilization with enzymes

OLOGY LABORATO



- Pretreatment: 60% solubilization within 4 hours
- Intact food waste: 40% solubilization at 8 hours
- Pretreatment significantly increased substrate availability

# Objectives

1. Determine solubilization kinetics of pretreated food waste

OGY LABORAT

2. Measure impacts of pretreatment on methane production kinetics

# **Objective 2: Methane production**

- Biochemical methane potential (BMP) assay
- Batch assay measures ultimate methane yield of a substrate
- Inoculated with methanogenic culture
- Measures microbial methanogenesis



Methanosarcina sp.



OGY LABORAT

# **Objective 2: Methane production**

• Pretreated food waste (meat grinder) vs. intact food waste

OGY LABORAT

- Flushed dairy manure used as an inoculum
- Digested at mesophilic temperature (35°C)
- Methane generation measured daily



**BMP** Methane Production

OGY LABORATO



- Both pretreated and intact food waste reached nearly 100% conversion within 14 days
- Intact food waste slightly greater than pretreated food waste
- May be due to accumulation of organic acids through increased acidogenesis

# Conclusions

- Mechanical pretreatment results in significantly faster solubilization than intact food waste
- Pretreatment did not lead to faster methane production
  - May be limited by slower methanogenic rate in BMP assay
- Therefore a high-rate digester (e.g. fixed film or twophase) could be coupled with mechanical pretreatment to take full advantage of increased solubilization



# Acknowledgements

I would like to thank:

Dr. Ann C. Wilkie - Advisor
Soil and Water Science Department

**Committee Members** 

- Dr. George Hochmuth Soil and Water Science Deparment
- Dr. Kimberly Moore Environmental Horticulture Department

This work is funded by a grant from the Hinkley Center for Solid and Hazardous Waste Management.

# Questions?



Contact: reg1214@gmail.com

Website: http://biogas.ifas.ufl.edu/foodwaste

OGY LABORAT